

Accessibility

(B)

Compact

 Sealed fixture with short powercable and IP electrical connector cable and IP electrical connector for a quick and simple linkage to
the mains. the mains.

Optical technology
(G)

Glassed
Refracting optical system consist of singlechip LED, PMMA lenses with 30 years of warranty against UV reflector having a purity of $99,7 \%$ and extra clear tempered glass.

Scale: 1:5
Max. weight
4 Kg
CXS

Module Combining
Lateral: 0,02 m^{2} |Plan: 0,04 m^{2}

Fixing type

Standard

EN 60598-1, EN 60598-2-3, EN 62471, EN 55015, EN 61547, EN 61000-3-2, EN 61000-3-3

Conformity | protection

Plus

Compliant

Lighting fixture features
General features

Power source:	220-240V \| 50/60Hz	tolerance +/-10\%	
	120-277V \| $50 / 60 \mathrm{~Hz}$ \| tolerance $+/-10 \%$		
Current supply:	525 mA \| $700 \mathrm{~mA} \quad\left(\mathrm{P}_{\max } 3\right.$ modules $\left.=103 \mathrm{~W}\right)$		
Power Factor \|THD:	$\geq 0.95 \mid<10 \%$ (At full load)		
Expected life ($\mathrm{Ta}=25^{\circ}$):	$>100.000 \mathrm{~h} \mid$ L90B10 ${ }^{\text {@ LED }} 700 \mathrm{~mA}$		
Operational temperature (Ta): $\mathrm{T}_{\text {min }}=-40^{\circ} \mathrm{C}$			
Storage temperature:	$-40^{\circ} \mathrm{C} /+80^{\circ} \mathrm{C}$		
Standard functions:	Current fixed \| Virtual midnight	1-10V	CLO
Overcharge protection:	Main surge immunity up to 10 kV		

Materials

Lighting fixture:	Die cast aluminium \| EN1706		
Optical system:	Optics in PMMA Plastic reflecor metallic painted		
Screen: Screen-printed ultraclear tempered glass \| Th. 4mm Gaskets: Removable silicon Cable gland: Polyamide PA66 \| PG16	Ø 14mm MAX	IP 66 Screws and bolts: AISI 304 stainless steel Fixture color: GMR light	

Led features

LED data $4.000 \mathrm{~K}-700 \mathrm{~mA}: 340 \mathrm{Im} / \mathrm{LED}|180 \mathrm{Im} / \mathrm{W}| 25^{\circ} \mathrm{C}[\mathrm{Tj}] \mid \leq 3$ step MacAdam
Color temperature: $\quad 3.000 \mathrm{~K}|4.000 \mathrm{~K}| 5.700 \mathrm{~K} \mid \mathrm{CRI} \geq 70$

Optional

Additional surge protector SPD with warning LED CLASS 1 |CLASS 2 12kV/kA device:
Optional functions: DALI-DALI2

Available optical system

ASYMMETRICAL DISTRIBUTIONI\TYPE 2

2 A

ASYMMETRICAL DISTRIBUTIONI\TYPE 3
3A

3B

$3 C$

3D

3 E

PEDESTRIAN PATHS \backslash TYPE 4
4A

4B

SYMMETRICAL DISTRIBUTION\ITYPE 5
5A

TYPE 4A

Dati fotometrici

The LED modules nominal data refers only to the LED light sources in a standard version, with 4000 K color temperature, color rendering index CRI 70 min . and a junction temperature tj of $25^{\circ} \mathrm{C}$. The LED nominal data are extrapolated from the manufacturer documentations.

The lighting fixture measured data refers to GMR ENLIGHTS products in a standard version, with 4000 K color temperature, optica type 3 B and an ambient temperature ta of $25^{\circ} \mathrm{C}$.
GMR ENLIGHTS offers the possibility of driving the device with custom currents (.).
To obtain luminous fluxes and efficiencies of the lighting fixture in case of color temperature and/or color rendering index different from the standard use the conversion factors shown in the tables.

LED modules nominal data ($\mathbf{4 0 0 0} \mathbf{~ K ~ | ~ C R I ~} 70 \mathbf{~ m i n} . \mid \mathrm{tj}=\mathbf{2 5}{ }^{\circ}$)

Lighting fixture measured data (4000 K | OPTIC 3B | ta=25 ${ }^{\circ}$)

OPTIC CONVERSION FACTOR LUMINOUS FLUX		Tk CONVERSION FACTOR LUMINOUS FLUX		CRI CONVERSION FACTOR LUMINOUS FLUX				
Optic	Flux multiplier	Tk [K]	Flux multiplier	CRI (color render index)	Flux multiplier			
$1 \mathrm{~A}^{(*)}$	1,00	$2.200{ }^{(*)}$	0,70	70	1,00			
$2 \mathrm{~A}{ }^{(*)}$	0,99	3.000	0,94	80	0,93			
3A\|3C	3D	3E	3F	0,99	4.000	1,00		
4A \| 4B	0,98	5.700	1,01					
$5 \mathrm{~A}^{(*)}$	1,01							

Functions

Standard functionality

Fixed current

During production, the light fixture is pre-set with a fixed current amongst the standard settings that appear in the tables on page 3 . Upon customer's request, it is also possible to set a specific current (custom setting).

Virtual Midnight | Automatic dimming

The driver is programmed to automatically dim the light output according to the time. As required by regulations, the maximum output is set during initial hours and towards the end of the light fixture's operating time interval. During these hours there is statistically more traffic. The light output is then dimmed during the central hours of the operating time interval. This management is achievable through a self-learning process of the device, that establishes the centre point of the time interval. This moment is called "virtual midnight" and it is the point that the dimming profile refers to in order to know when to reduce the light output. We can manage up to 8hrs of programming that evolve around the virtual midnight and up to 5 steps of dimming. This way the light output will adjust automatically, adapting throughout the year to the duration of the nighttime, by referring to the pre-set parameters based on the centre point of the operating time interval.

CLO Constant Lumen Output

LEDs over time are inevitably subject to performance depreciation. This light reduction may be compensated by gradually increasing the LED's current during its lifespan, this corresponds to a gradual increase of lumen output proportional to the amount that is naturally depreciated.

1-10V Analog control system

On request, the fixture can be equipped with 1-10V dimming interface. This protocol provides the possibility of dimming a single device or a public lighting line through a 1-10V control bus.

On request functionality

DALI - DALI2 Control and monitoring system

On request, the fixture can be fitted with a DALI2 communication interface. This protocol allows it to be monitored and controlled remotely through use of Dali control buses.

DALI SENSOR (D4i)

On request, the fixture can be equipped with a D4i certified power supply. This is the ideal solution for wireless sensors and/or controls. This system was developed to integrate various systems to address smart city requirements. Included is DALI2 protocol + auxiliary power (AUX) to supply power to devices and sensors. This system is usually required when using a Zhaga Lumawise socket.

LINESWITCH

This functionality by using an extra wire within the streetlight's power line, allows to dimmer to a pre-set level. For example, a centralised timer can change this value from 100% to 50%, and vice versa.

AMPDIM

This feature allows dimming using the power line controlled by an upstream flow regulator. For this feature, the flow controller must use amplitude modulation (AM).

On request connectors and external sockets

NEMA | Nema Socket (7 PIN)

The Nema Socket is a 7 PIN connector/socket with IP66 rating, that is fitted on the fixture to make it interfaceable with various ANSI C136 compliant devices and remote-control gear. These devices can be installed during or after installation of the light fixtures. The NEMA socket can provide power interruption and is interfaceable with DALI buses and/or 1-10V dimming. It is compatible with point-to-point node connection, and twilight sensors ect.

ZHAGA Lumawise Zhaga Socket (4 PIN)

The Lumawise Zhaga socket is a small and compact 4 Pin connector/socket, that is fits ideally with the design of GMR ENLIGHTS fixtures. With ZHAGA Lumawise sockets it is possible install the devices, sensors, ZHAGA remote controls during or after installation of the light fixtures. This socket is usually required in conjunction with the DALI Sensor feature, which involves a DALI2/D4i communication protocol in addition to $12 / 24 \mathrm{~V}$ auxiliary port to supply power to the sensors. It is compatible with point-to-point wireless control solutions and SMART CITY applications to control and monitor the public lighting infrastructure.

Third-party remote control

GMR ENLIGHTS fixtures are compatible with most third-party remote controls, powerline communication systems, wired systems (buses) and wireless systems.

Example of 4-step adjustment with virtual midnight

Running hours $\times 10^{3}(\mathrm{~h})$

CLO Light Flow Compensation

7 Pin Nema Socket 7 (A) and IP66 shorting cap (B)
A
B

4Pin Lumawise Zhaga Socket (C) and IP66 cap (D)
C
D

Installation example of Lumawise Zhaga

Protection cycles

GMR ENLIGHTS works with cast iron, steel and aluminum. The materials are selected and processed to maximize performance and quality.

Protection of galvanized steel surfaces for poles

The protection of galvanized steel elements is achieved by following steps:

- Micro sandblasting;
- First epoxy layer application followed by:

Wilting > Drying > Cooling;

- Acrylic glaze layer application followed by:

Wilting > Drying > Cooling;

- Packing at least after 24-hour-drying at room temperature.

Protection of galvanized steel surfaces for brackets and pastorals

The protection of the galvanized steel elements is achieved thanks to:

- Micro sandblasting;
- Phosphoric pickling bath at a ph level ranging from 1.5 to 3;
- Rinsing with demineralised water;
- First powder layer application;
- Kiln firing;
- Application of a final powder layer;
- Kiln roasting of the final powder layer at $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$;
- Cooling.

Protection of cast iron surfaces for bases

The protection of cast iron elements is achieved by the following treatments:

- Surface micro shotblasting;
- Mono-component dip galvanizing followed by: Wilting > Drying > Cooling;
- Epoxy micaceous primer application followed by:

Wilting > Drying > Cooling;

- Acrylic enamel application followed by:

Wilting > Drying > Cooling;

- Packing at least after 24-hour-drying at room temperature.

Protection of die-cast aluminium surfaces for lighting fixtures, tops, collars, brackets and pastorals

Lighting fixtures, brackets, pastoral, and die-cast accessories undergo a cycle of powder painting which creates a barrier against the corrosion of metal parts. Moreover this barrier makes the finished product comply with design specifications in terms of surface roughness, color and reflectance.
The cycle consists of the following steps:

- Micro sandblasting;
- Hot pickling bath in a zinc-based phosphodegreasing solution;
- Specific process for the preparation of surfaces before painting;
- Washing with water;
- Rinsing with demineralised water and subsequent drying
- First bowder layer application followed by kiln baking at $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$;
- Final powder layer application using a High Durability product and final kiln roasting at $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$.

Salt spray test

The top quality of such treatments is confirmed by salt spray tests performed in accordance with standard ISO 9227:2017 Neutral Salt Spray test (NSS).
The test was carried out for 8.000 hours at $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ and demostrated through the report test released.

GMR ENLIGHTS s.r.I

Legal headquarters:
Strada Provinciale Specchia - Alessano, 68•73040 (LE)

Administrative and operational headquarters: Via Grande $n^{\circ} 226 \cdot 47032$ Bertinoro (FC)

T +39 0543462611
F +39 0543449111
sales@gmrenlights.com
www.gmrenlights.com

