

TARUS600

Dati tecnici

2023.09

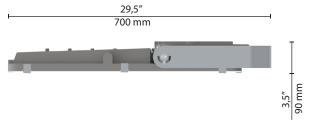
APPLICAZIONI

Grandi Aree, Campi sportivi, Impianti sportivi, contesti Industriali.

ACCESSIBILITÀ

TECNOLOGIA OTTICA

Openable


Apparecchio apribile e rigenerabile (componentistica interna sostituibile) con l'utilizzo di utensili.

Glassed

Sistema ottico a rifrazione composto da single-chip LED, lenti in PMMA garantite 30 anni contro UV e ingiallimento da invecchiamento, recuperatore in alluminio con grado di purezza 99,7% e vetro extra chiaro temperator

Scala: 1:15

Peso massimo CXS

Frontale: 0,27 m²

EN 60598-1, EN 60598-2-3, EN 62471, EN 55015, EN 61547, EN 61000-3-2, EN 61000-3-3

CERTIFICAZIONI | PROTEZIONE

Conformità

Norme

Test in nebbia salina

ISO 9227

Vibration test superato

IEC 60068-2-6

Classi di isolamento

₹05 (€ **Ø**25

Sicurezza fotobiologica

Classe 0 Rischio

PLUS

CARATTERISTICHE APPARECCHIO

Caratteristiche generali

Tensione:	220-240V 50/60Hz tolleranza +/-10%
Corrente:	350 mA 525 mA 700 mA 1050 mA (P _{max} = 626W)
Fattore di potenza THD:	≥0.95 <10 % (A pieno carico)
Vita stimata (Ta=25°):	> 100.000 h L90B10 @ LED 1050mA
Temperatura esercizio (Ta):	$T_{min} = -40$ °C $T_{max} = +50$ °C 1050mA (324W)
Temperatura di stoccaggio:	-40°C/+80°C
Protezioni sovratensioni:	Main surge immunity fino a 10kV
Sezionatore:	Optional
Funzionalità di serie:	Corrente fissa Mezzanotte virtuale CLO

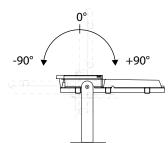
Materiali

Corpo illuminante:	Pressofusione di alluminio EN1706
Gruppo ottico:	Ottica in PMMA
	Riflettore in alluminio, purezza 99,7% ossidato e brillantato
Schermo:	Vetro ultrachiaro temprato e serigrafato sp. 4 mm
Guarnizione:	Silicone rimovibile
Pressacavo:	Poliammide PA66 PG16 Ø 14mm MAX IP66
Bulloneria:	Acciaio inox AISI 304
Staffa:	Acciaio zincato
Colore corpo:	GMR light
Colore serigrafia:	RAL 9005

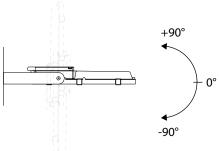
SPECIFICHE LED

Dati LED 4.000 K - 700mA: 340 lm/LED | 180 lm/W | 25°C [Tj] | ≤ 3 step MacAdam $3.000 \text{ K} \mid 4.000 \text{ K} \mid 5.700 \text{ K} \mid \text{CRI} \ge 70$ Temperatura di colore:

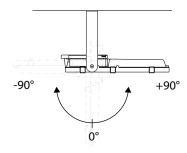
Dati tecnici

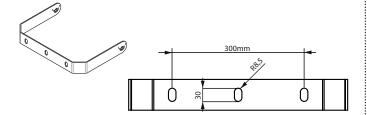


2023.09


TIPO DI FISSAGGIO*

Regolabile in continuo





FORATURA STAFFA

OPTIONAL

Accessori meccanici: Traversa cimapalo in acciaio zincato

Griglia di protezione | Mirino di puntamento

Protezione addizionale con SPD con LED di segnalazione CLASSE 1 | CLASSE 2

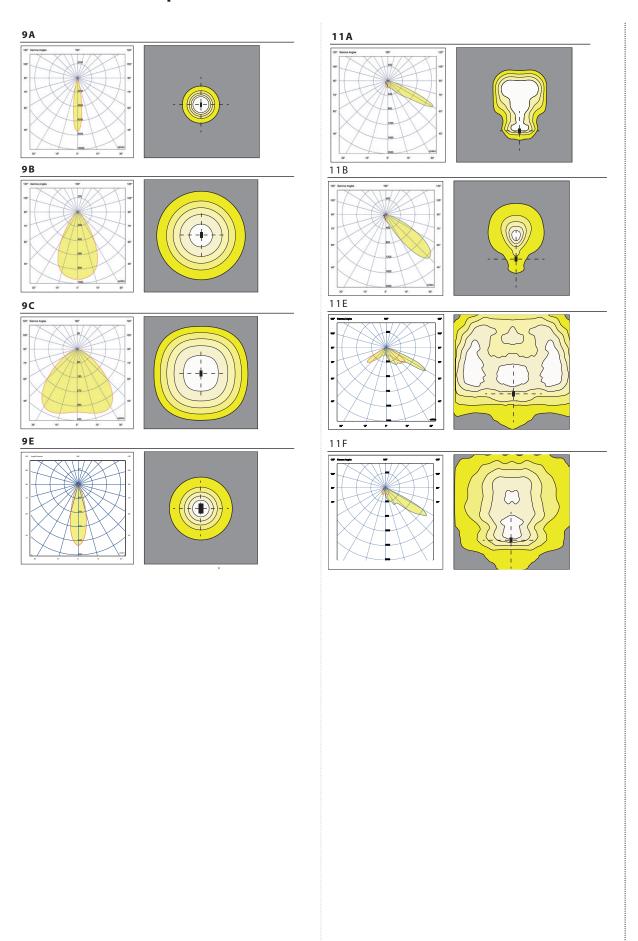
dispositivo SPD: 12kV/kA

Protezione addizionale con SPD con LED di segnalazione CLASSE 1 | CLASSE 2 12kV+

dispositivo SPD 400: protezione da sovratensione permanente superiore a 270Vac

Accessori elettrici: Cavo di alimentazione 0,5 m, connettore 2-3 poli, 4-5 poli

Sezionatore con fissacavo | sezione cavi 1.5mm² ÷ 4mm²


Funzionalità su richiesta: DALI2 D4i

Connettori e prese esterne: NM (Nema Socket) | ZS (Lumawise Zhaga Socket)

Sistemi ottici disponibili

2023.09

Dati fotometrici | Dati nominali sorgente LED

2023.09

I dati fotometrici nominali sono riferiti alle sole sorgenti LED nella versione standard, ovvero con temperatura di colore 4000 K, indice di resa cromatica CRI 70 min. e temperatura di giunzione tj pari a 25°C. I dati nominali sono estrapolati dalla scheda tecnica del costruttore.

dice LED		(•) I [mA]	Flusso luminoso [lm]	Potenza [W]	Efficienza [lm/W]
		350	19795	93,4	212
GL24		525	28092	143,1	196
GL24		700	35299	194,1	182
		1050	48185	298,1	162
		350	26147	124,2	211
		525	37100	190,4	195
GL32		700	46607	257,6	181
GLJZ		850	54244	316,5	171
		900	56828	336,7	169
		1000	61828	377,2	164
		1050	62964	395,6	159
	350	32064	154,6	207	
		525	45484	236,4	192
		700	57115	320,2	178
		750	60525	345,0	175
GL40		800	63864	369,8	173
		850	66456	393,3	169
		900	69620	418,6	166
	950	72716	443,9	164	
		1000	74993	469,2	160
		350	37732	184,0	205
		525	53513	282,4	189
		600	58809	318,3	185
		650	63713	353,7	180
		700	67164	381,8	176
GL48		750	71173	411,7	173
GL-10		800	75098	441,1	170
		900	80916	499,6	162
		950	84513	529,5	160
		1000	88030	559,8	157
		1050	90517	575,9	157

Dati fotometrici | Dati misurati sorgente LED

2023.09

I dati fotometrici misurati sono riferiti ai corpi illuminanti GMR ENLIGHTS nella versione standard, ovvero con temperatura di colore 4000 K, ottica di tipo 9A e temperatura ambiente ta pari a 25°C.

GMR ENLIGHTS offre la possibilità di pilotare l'apparecchio con correnti custom (•).

La disponibilità delle funzioni è soggetta alle configurazioni. Per ottenere flussi luminosi ed efficienze del corpo illuminante in caso di tipologia di ottica e/o temperatura di colore e/o indice di resa cromatica diversi dallo standard utilizzare i fattori di conversione riportati nelle tabelle.

Codice odine: TS6_GLxx	(•) I [mA]	Flusso luminoso [lm]	Potenza [W]	Efficienza [lm/W]
	350	17420	101,5	168
6124	525	24721	155,5	156
GL24	700	31063	211,0	144
	1050	42403	324,0	128
	350	23009	135,0	170
	525	32648	207,0	158
	700	41014	280,0	146
GL32	850	47735	344,0	139
	900	50009	366,0	137
	1000	54409	410,0	133
	1050	55408	430,0	129
	350	28216	168,0	168
	525	40026	257,0	156
	700	50261	348,0	144
	750	53262	375,0	142
GL40	800	56200	402,0	140
	850	58481	427,5	137
	900	61266	455,0	135
	950	63990	482,5	133
	1000	66654	510,0	130
	350	33204	200,0	166
	525	47091	307,0	153
	600	51752	346,0	150
	650	56067	384,5	146
	700	59104	415,0	142
GL48	750	62632	447,5	140
	800	66086	479,5	138
	900	71206	543,0	131
	950	74371	575,5	129
	1000	77466	608,5	127
	1050	79655	626,0	127

FATTORE DI CONVERSIONE FLUSSO LUMINOSO IN FUNZIONE DELL'OTTICA

Tipo di ottica	Moltiplicatore flusso
11A 11B 11E 11F	0,98
9A 9E	1,00
9B 9C 11C	0,99

FATTORE DI CONVERSIONE FLUSSO LUMINOSO IN FUNZIONE AL TK

Tk [K]	Moltiplicatore flusso
3.000	0,94
5.700	1,01

FATTORE DI CONVERSIONE FLUSSO LUMINOSO IN FUNZIONE AL CRI

Moltiplicatore flusso
1,00
0,93

Dati fotometrici | Limitazioni

2023.09

Di seguito sono riportate le limitazioni in base alle temerature ambientali per un corretto e sicuro uso del proiettore Tarus 600 divise per area geografica. Si prega di fare sempre riferimento alla tabella e confrontarsi con l'ufficio commerciale di riferimento in fase di ordine.

geografica. Si prega di fare sempre riferimento alla tabella e confrontarsi con l'ufficio commerciale di riferimento in fase di ordine.	

		TA N	MEDIA N	EL MESE PIÙ CALDO (°C)		
America		Asia/Oceania		Middle East/Africa		Europe
	ТоР		ТоР		ТоР	
Argentina	30	Australia	30	Saudi Arabia	45	Albania
Brazil	30	South Korea	30	Bahrain	40	Austria
Canada	25	Philippines	35	Egypt	35	Belgium
Chile	30	Hong Kong	35	Jordan	35	Bosnia Herzegovina
Colombia	20	India	35	Israel	30	Bulgaria
Ecuador	30	Iran	35	Kuwait	50	Cyprus
Mexico	30	Malaysia	35	Libanon	30	Croatia
Perù	30	New Zealand	25	Morocco	30	Denmark
Uruguay	35	Pakistan	35	Oman	40	Estonia
USA (Arizona)	40	Russia	25	Qatar	45	Finland
USA (New York)	30	Singapore	35	UAE (Abu Dhabi)	40	France (Lyon)
		Taiwan	35			France (Marseille)
		Vietnam	35			France (Parigi)
	:		:		:	Germany
						Greece

TARUS 600 OUTDOOR								
Max Corrente per configurazione ottica	ToP20	ToP25	ToP30	ToP35	ToP40	ToP45	ToP50	
GL24	1050	1050	1050	1050	1050	1050	1050	
GL32	1050	1050	1050	1050	1050	1050	900	
GL40	1000	1000	1000	950	900	850	750	
GL48	1050	1000	950	900	800	700	650	

TARUS 600 INDOOR						
Max Corrente per configurazione ottica	ToP25	ToP30	ToP35	ToP40	ToP45	ToP50
GL24	1050	1050	1050	1050	1050	1050
GL32	1050	1050	1050	1050	1000	850
GL40	1000	1000	900	850	800	700
GL48	950	900	800	750	650	600

	:	ToP
Albania	:	30
Austria	:	25
Belgium		25
Bosnia Herzegovina		35
Bulgaria	:	30
Cyprus	:	35
Croatia		30
Denmark	:	20
Estonia	:	20
Finland		20
France (Lyon)	:	30
France (Marseille)	:	30
	:	25
France (Parigi)		25
Germany Greece	:	
	:	35
Ireland	:	20
Iceland		15
Canary Islands	- :	30
Italy		30
Lettonia	:	20
Liechtenstein		25
Lithuania		25
Luxembourg	:	25
Malta		35
Moldavia		30
North Macedonia	:	30
Norway		20
Netherlands		20
Poland	:	25
Portugal		30
Czech Republic	:	25
Romania		30
Scotland		20
Serbia	:	30
Slovenia		30
Spain (Madrid)		35
Spain (Malaga)		30
Spain (Barcelona)		35
Sweden (Goteborg)	:	20
Sweden (Borlänge)		25
Switzerland		25
Turkey (Ankara)		30
		25
Ukraine (Kiev)		

Funzionalità

Funzionalità di serie

Corrente fissa

Il corpo illuminante è preimpostato in fabbrica con una corrente di pilotaggio fissa tra quelle standard indicate nelle tabelle di pagina 3. E' possibile impostare altre correnti su richiesta del cliente (custom).

Mezzanotte virtuale | Dimmerazione automatica del flusso luminoso

Il driver viene programmato per dimmerare automaticamente l'emissione luminosa in funzione dell'orario. Come previsto dalle norme, la massima emissione viene concentrata nelle prime e nelle ultime ore di accensione del corpo illuminante, statisticamente più trafficate, per poi diminuire nelle ore centrali del periodo di accensione. La regolazione avviene tramite un processo di auto-apprendimento dell'apparecchio, che determina il punto di mezzo tra l'istante di accensione e quello di spegnimento. Questo momento, definito "mezzanotte virtuale", costituisce il punto di riferimento per applicare la riduzione dell'emissione luminosa secondo il profilo desiderato. Possiamo gestire fino a 8h di programmazione attorno alla mezzanotte virtuale e fino a 5 step di dimmerazione. La regolazione dell'emissione luminosa si aggiorna quindi automaticamente, adattandosi alla durata della notte nell'arco dell'anno e tenendo semprecome riferimento i parametri preimpostati relativi al punto centrale tra accensione e spegnimento.

I LED sono soggetti ad un processo di decadimento prestazionale dovuto all'utilizzo. La diminuzione delle prestazioni può essere compensata tramite un aumento graduale della corrente di pilotaggio per tutto il periodo di vita impostata, ottenendo così un aumento graduale del flusso luminoso in uscita che compensa proporzionalmente quello decaduto naturalmente.

Funzionalità su richiesta

DALI2 | Sistema di controllo e monitoraggio

Su richiesta il corpo illuminante può essere equipaggiato con interfaccia di comunicazione DALI2. Questo protocollo prevede la possibilità di controllo e monitoraggio del corpo illuminante tramite bus di controllo dali.

Su richiesta il corpo illuminante può essere equipaggiato con alimentatore certificato D4i. Questa soluzione è l'ideale ove siano richiesti sensori e/o controlli di tipo wireless. Il sistema nasce per l'integrazione di sistema e nella direzione delle smart cities. Previsti protocollo DALI2 + alimentazione ausiliaria AUX per l'alimentazione di dispositivi e sensori. Questo sistema viene usualmente richiesto in accoppiata con la socket Zhaga Lumawise.

Questa funzionalità , grazie a un filo conduttore addizionale sulla linea di alimentazione di illuminazione pubblica, permette di poter dimmerare l'impianto a un livello stabilito. Grazie ad esempio a un timer centralizzato è possibile cambiare lo stato da 100% a ad esempio il 50%, e viceversa.

Questa funzionalità permette la dimmerazione di una linea di illuminazione pubblica attraverso la stessa linea di alimentazione pilotata da un regolatore di flusso a monte. Per questa funzionalità Il regolatore di flusso deve lavorare in modulazione di ampiezza.

NEMA | Nema Socket (7 PIN)

Il Nema Socket è un connettore/presa a 7 PIN, IP66, che viene montato sul corpo illuminante per renderlo interfacciabile con i dispositivi e telecontrolli compatibili NEMA, ANSI C136.41. Tali dispositivi possono essere installati contestualmente o in una fase successiva all'installazione del corpo illuminante. La socket NEMA prevede la possibilità di interruzione dell'alimentazione, e l'interfacciamento con bus DALI e/o 1-10V. Compatibile con dispositivi quali "nodi punto-punto wireless" oppure "sensori crepuscolari" e altri.

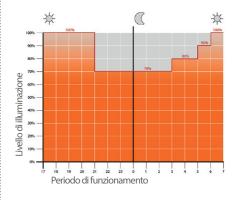
ZHAGA | Lumawise Zhaga Socket (4 PIN)

Il Lumawise Zhaga Socket 4 PIN è un connettore/presa a 4 PIN, IP66, piccolo e compatto, che maggiormente si sposa col design dei corpi illuminanti di GMR ENLIGHTS. La predisposizione con socket ZHAGA lumawise permette di installare i dispostivi, sensori, telecontrolli ZHAGA sia contestualmente all'installazione che in una fase successiva. Questa socket è solitamente richiesta in accoppiata alla funzionalità DALI SENSOR, che prevede il protocollo di comunicazione DALI2 / D4i oltre a un'alimentazione ausiliaria di 12/24V per l'alimentazione dei sensori. Compatibile con soluzioni per il controllo punto punto wireless e le applicazioni SMART CITIES, per il controllo e monitoraggio dell'infrastruttura di illuminazione pubblica.

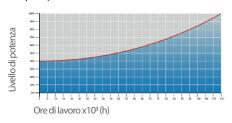
TELECONTROLLO ZHAGA STD

Il dispositivo viene installato sul corpo illuminante dotato di driver D4I con uscita AUX24v, tramite socket zhaga predisposto. Il telecontrollo lavora alla frequenza 2,4GHz, e comunica in una rete mesh sicura grazie alla crittografia dei dati a 256bit e 16 canali utili al segnale. Con una potenza radio di 21dBm e un miglior posizionamento dell'antenna, il nodo permette di coprire ampie distanze e superare ostacoli. Dotato di luxmetro e accelerometro, può lavorare sia stand-alone che nell'ambito dell'infrastruttura di comunicazione dedicata. Il dispositivo implementa politiche di risparmio energetico che portano il consumo medio del dispositivo a 0,19W. Nell'applicazione smartcity il nodo permette di interagire con la rete di illuminazione stradale, dimmerando i corpi illuminanti a necessità e in base alle condizioni di traffico e metereologiche, apportando al sistema notevoli vantaggi economici in termini di risparmio energetico. Il nodo permette inoltre monitoraggio e diagnostica della rete di illuminazione pubblica, dalla singola zona, al paese fino a un'intera città o regione. II nodo ha un diametro di 80mm e altezza di 59mm. IK09, IP66.

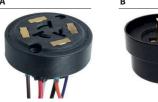
TELECONTROLLO ZHAGA GPS


Questa versione comprende oltre alle funzionalità espresse per la versione STD, anche un GPS.

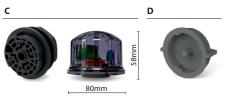
Grazie al GPS il sistema può contare su un orologio astronomico nonché tutte le funzionalità legate al posizionamento esatto del corpo illuminante. Soprattutto in fase installativa e di messa in esercizio, avere a disposizione le informazioni relative ai posizionamenti semplifica e velocizza notevolmente l'avvio dell'impianto.


Telecontrolli di terze parti presenti sul mercato

I corpi illuminanti GMR ENLIGHTS, sono compatibili con la maggior parte dei telecontrolli di terze parti, sistemi a onde convogliate, sistemi a filo (bus), sistemi wireless.


Esempio di regolazione a 4 step con mezzanotte virtuale

CLO | Compensazione del flusso luminoso



Nema Socket (A) e tappo IP66 di chiusura (B)

Lumawise Zhaga Socket (C) e tappo IP66 di chiusura (D)

Esempio di applicazione Lumawise Zhaga

GMR ENLIGHTS

Cicli di protezione

GMR ENLIGHTS lavora con ghisa, acciaio e alluminio. I materiali sono selezionati e trattati per massimizzare performance e qualità.

Protezioni delle superfici in acciaio zincato per pali

La protezione di elementi in acciaio zincato è ottenuta attraverso le seguenti fasi:

- Microsabbiatura;
- Applicazione di uno strato di fondo epossidico con successive fasi di: Appassimento > Essicamento > Raffreddamento;
- Applicazione di uno strato di smalto acrilico con successive fasi di: Appassimento > Essicamento > Raffreddamento;
- Imballo dopo almeno 24 ore di essicamento e temperatura ambiente.

Protezioni delle superfici in acciaio zincato per mensole e pastorali

La protezione degli elementi in acciaio zincato è ottenuta attraverso le seguenti fasi:

- · Microsabbiatura;
- Fosfodecapaggio a pH compreso tra 1.5 e 3;
- Risciacquo con acqua demineralizzata;
- · Applicazione di uno strato di fondo a polvere;
- · Cottura in forno;
- · Applicazione di finale a polvere;
- Cottura in forno del finale a polvere a 180°;
- Raffreddamento.

Protezioni delle superfici in ghisa per basamenti

La protezione degli elementi in ghisa si ottiene attraverso i seguenti trattamenti:

- Micropallinatura superficiale;
- Zincatura con zincante monocomponente ad immersione, con successive fasi di:

Appassimento > Essicamento > Raffreddamento;

• Applicazione di uno strato di primer epossidico-micaceo con successive fasi di:

Appassimento > Essicamento > Raffreddamento;

- Applicazione di uno strato di smalto acrilico con successive fasi di:
- Appassimento > Essicamento > Raffreddamento;
- Imballo dopo almeno 24 ore di essicamento e temperatura ambiente.

Protezioni delle superfici in pressofusione di alluminio per corpi illuminanti, punte, collari, mensole e pastorali

Corpi illuminanti, mensole, pastorali e accessori in pressofusione sono sottoposti ad un ciclo di verniciatura a polvere, che assicura una barriera alla corrosione delle parti metalliche e rende l'aspetto del prodotto finito conforme alle specifiche progettuali, in termini di rugosità superficiale, colore riflettanza. Il ciclo è strutturato nei passaggi descritti di seguito:

- Microsabbiatura:
- Decapaggio a caldo in soluzione fosfosgrassante a base di zinco;
- Processo specifico per la preparazione delle superfici prima della
- · Lavaggio con acqua;
- Risciacquo con acqua demineralizzata e successiva asciugatura;
- Applicazione di fondo a polvere e successiva cottura del fondo in
- · Applicazione di polvere a finire utilizzando un prodotto High Durability e cottura finale in forno a 180°.

Test nebbia salina

L'elevata qualità di questi trattamenti è confermata da test in nebbia salina, eseguito in accordo con la normativa ISO 9227:2017 Neutral Salt Spray test (NSS). Il test è stato eseguito per 8.000 ore a 35°C e comprovato da test report rilasciato.

GMR ENLIGHTS s.r.l

Sede legale: Strada Provinciale Specchia - Alessano, 68 • 73040 (LE)

> Sede amministrativa e operativa: Via Grande n°226 • 47032 Bertinoro (FC)

> > T+39 0543 462611 F+39 0543 449111

italia@gmrenlights.com www.gmrenlights.com