

VESTAB**small**

Données techniques

rev. 2022.10

ACCESSIBILITÉ

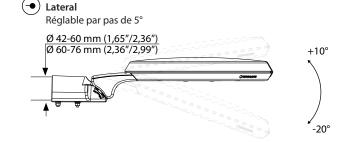
TECHNOLOGIE OPTIQUE

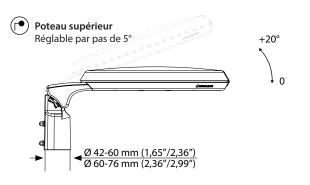

Timeless

Appareil ouvrant et régénérable (composants internes remplaçables) sans utilisation d'outils.

Glassed

Système optique à réfraction, constitué d'une LED à puce unique, de verres en PMMA garantis 30 ans contre les UV et le jaunissement dû au vieillissement, d'un récupérateur en aluminium avec degré de pureté 99,7% et verre extra-clair trempé.


Échelle: 1:10


Poids maximum CXS

8,6 Kg

Laterale: 0,05 m² |Plan: 0,18 m²

TYPE DE FIXATION

Normes

EN 60598-1, EN 60598-2-3, EN 62471, EN 55015, EN 61547, EN 61000-3-2, EN 61000-3-3

CERTIFICATIONS | PROTECTION

Conformité

Test en brouillard

Classes d'isolation

Classes de protection

Test de vibration réussi

IEC 60068-2-6

Sécurité photobiologique

Classe 0 Risque exempt IEC/TR62471

PLUS

CARACTERISTIQUES DU LUMINAIRE

Caractéristiques générales

220-240V | 50/60Hz | tolérance +/-10% Tension:

350 mA | 525 mA | 700 mA | 1050 mA Courant: $(P_{max} = 103W)$

Facteur de puissance | THD: ≥0.95 | <10 % (à pleine)

Durée de vie estimée (Ta = 25°): > 100.000 h | L90B10 | @ LED 350mA

Température de service (Ta): T_{min}= -40°C $T_{max} = +55^{\circ}C |700 \text{ mA}$

+50°C |1050 mA

Température de stockage: -40°C/+80°C

Protection contre les surtensions: Immunité aux surtensions jusqu'à 10 kV

Équipé d'un dispositif anti traction | section 1,5 mm² ÷ 4mm² Sectionneur:

Fonction de série: Courant fixe |Minuit virtuel|CLO

Matériel

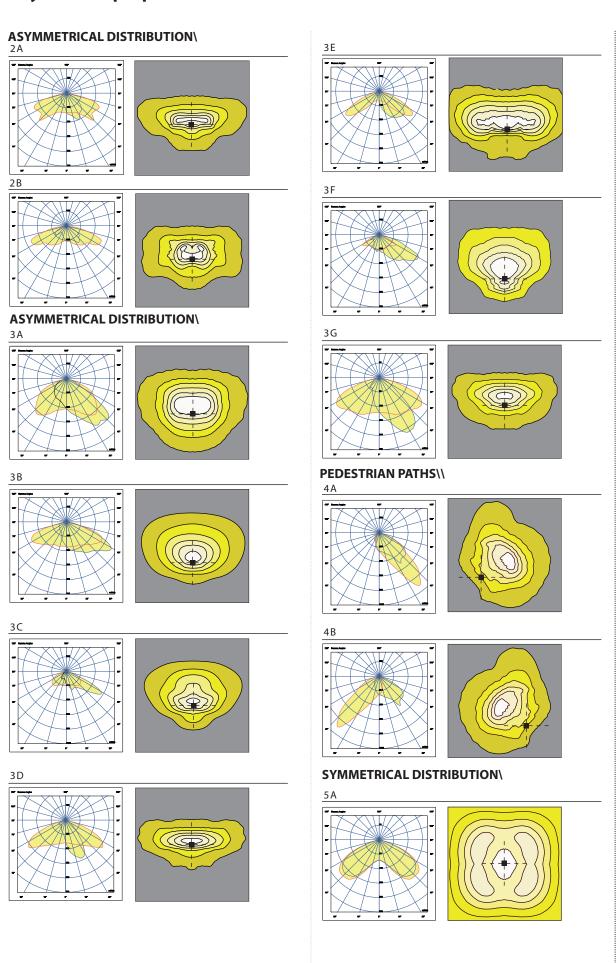
Luminaire:	Fonte d'aluminium EN1706		
Groupe optique:	Optique en Pl	MMA	
	Réflecteur en aluminium anodisé et brillanté, pureté		
Screen:	Verre ultra-clair trempé ép. 4 mm Silicone amovible		
Joint:			
Presse étoupe:	Polyamide PA	A66 PG16 Ø 14mm MAXI IP66	
Boulonnerie:	Acier inoxyda	able AISI 304	
Couleur du luminaire:	GMR light	Autres sur demande	

Couleur de sérigraphie : **S**PÉCIFICATIONS LED

Données LED 4000 K 640 mA:700 lm/LED | 181 lm/W | 25° C [Tj] | \leq 3 step MacAdam

Température de couleur: $3.000 \text{ K} \mid 4.000 \text{ K} \mid 5.700 \text{ K} \mid \text{CRI} \ge 70$

RAL 9005


OPTIONAL

	•	
	Protection supplémentaire avec dispositif SPD:	SPD avec LED de signalisation CLASSE 1 CLASSE 2 12 kV/kA
	Accessoires électriques:	Câble d'alimentation 0,5m avec connecteur à 2-3 ou 4-5 broches Équipé d'un dispositif anti traction section 1,5 mm 2 \div 4mm 2
	Fonction sur demande:	DALI-DALI2 DALI SENSOR Capteur de présence
	Connecteurs et prises externes:	NM (Nema Socket) LM (Lumawise Zhaga Socket) Télécommande Zhaga STD Télécommande GPS Zhaga

Systèmes optiques

rev. 2022.10

Données photométriques | Données nominales source LED

rev. 2022.10

Les données photométriques nominales se réfèrent uniquement aux sources LED en version standard, c'est-à-dire avec une température de couleur de 4000 K, un indice de rendu des couleurs CRI 70 min. et une température de jonction tj égale à 25°C. Les données nominales sont extrapolées à partir de la fiche technique du fabricant.

Code LED		(•) I [mA]	Flux lumineux [lm]	Puissance LED [W]	Efficiency [lm/W]
		350	1746	7,2	242
GL02	•	525	2568	11,5	224
	-	700	3362	15,7	214
		1050	4861	23,9	203
GL04		350	3427	14,9	230
	_	525	4999	23,1	217
		700	6474	30,7	211
		1050	9173	48,6	189
	L06	350	5030	22,6	222
		525	7351	33,8	217
GL06		700	9454	45,9	206
•	<u>-</u>	1050	13512	71,4	189
		350	6707	29,8	225
		525	9801	45,5	216
GL08	<u> </u>	700	12606	61,4	205
		1050	18016	95,2	189

Données photométriques | Données mesurées source LED

rev. 2022.10

Les données photométriques mesurées se réfèrent aux luminaires GMR ENLIGHTS en version standard, c'est-à-dire avec une température de couleur de 4000 K, une optique de type 3C et une température ambiante ta égale à 25°C.

GMR ENLIGHTS offre la possibilité de piloter le luminaire avec des courants personnalisés (•).

La disponibilité des fonctions est soumise aux configurations. Pour obtenir les flux lumineux et les efficacités du luminaire en cas de typologie optique et/ou de température de couleur et/ou d'indice de rendu des couleurs différents de la norme, utiliser les facteurs de conversion indiqués dans les tableaux. En cas de présence de verre en option, certains codes pour la commande peuvent être différents de ceux indiqués dans le tableau. Dans ce cas, les valeurs de flux lumineux et d'efficacité seront différentes de celles indiquées.

Code pour command	e: VBS_GLxx	(•) I [mA]	Flux lumineux [lm]	Puissance LED [W]	Efficiency [lm/W]
		350	1536	9,0	171
CLOS		525	2260	13,5	167
GL02		700	2959	18,5	160
	Pour optique 5A uniquement	1050	4278	27,5	156
		350	3016	17,5	172
		525	4399	26,5	166
GL04		700	5697	34,5	165
	Pour optique 5A uniquement	1050	8072	54,0	149
	GL06	350	4426	26,0	170
		525	6469	38,0	170
GL06		700	8320	51,0	163
	1050	11891	78,5	151	
	350	5902	33,5	176	
	GL08	525	8625	50,5	171
GL08		700	11093	67,5	164
		1050	15854	103,5	153

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DE L'OPTIQUE

Type d'optique	Multiplicateur flux
1A 1D 3G 5A	0,99
3B 3D	0,98
1B 2A 4A 4B	1,00
1C 3E 3F	0,97
2B 3A	0,96

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DU Tk

Tk [K]	Multiplicateur flux
3.000	0,96
5.700	0,99

FACTEUR DE CONVERSION DU FLUX LUMINEUX EN FONCTION DU CRI

CRI (rendu des couleurs)	Multiplicateur flux		
70	1,00		
80	0,93		

(*) Vérifiez la disponibilité de l'optique à la page : Systèmes optiques disponibles (**) Vérifiez la disponibilité de la température de couleur à la page : Données techniques

Fonction

Fonction de série

Courant fixe

Le corps d'éclairage est préréglé en usine avec un courant d'entraînement fixe parmi ceux standard indiqués dans les tableaux à la page 3. Il est possible de régler d'autres courants sur demande du client (personnalisé).

Minuit virtuel | Gradation automatique du flux lumineux

Le conducteur est programmé pour atténuer automatiquement la puissance lumineuse en fonction de l'heure. Comme le prévoit la réglementation, l'émission maximale est concentrée dans les premières et dernières heures du corps d'éclairage, statistiquement les plus chargées, puis décroît dans les heures centrales de la période d'éclairage. Le réglage s'effectue par un processus d'auto-apprentissage de l'appareil, qui détermine le point médian entre l'instant d'allumage et d'extinction. Cet instant, appelé « minuit virtuel », constitue le point de référence pour appliquer la réduction d'émission lumineuse selon le profil souhaité. Nous pouvons gérer jusqu'à 8 heures de programmation autour de minuit virtuel et jusqu'à 5 étapes de gradation. Le réglage de l'émission lumineuse-est alors mis à jour automatiquement, en s'adaptant à la durée de la nuit tout au long de l'année et en prenant toujours comme référence les paramètres prédéfinis relatifs au point central entre l'allumage et l'extinction.

Les LED sont soumises à un processus de dégradation des performances dû à l'utilisation. La diminution des performances peut être $compens\'ee par une augmentation progressive du courant d'entra \hat{n}ement pendant toute la dur\'ee de vie d\'efinie, obtenant ainsi une compens\'ee par une augmentation progressive du courant d'entra înement pendant toute la dur\'ee de vie d\'efinie, obtenant ainsi une compens\'ee par une augmentation progressive du courant d'entra înement pendant toute la dur\'ee de vie d\'efinie, obtenant ainsi une courant d'entra înement pendant toute la dur\'ee de vie définie, obtenant ainsi une courant d'entra înement pendant toute la durée de vie définie, obtenant ainsi une courant d'entra înement pendant toute la durée de vie définie, obtenant ainsi une courant d'entra înement pendant toute la durée de vie définie, obtenant ainsi une courant d'entra înement pendant toute la durée de vie définie, obtenant ainsi une courant ainsi$ augmentation progressive du flux lumineux de sortie qui compense proportionnellement celui naturellement dégradé.

Fonctionnalité sur demande

DALI-DALI2 | Système de contrôle et de surveillance

Sur demande, le corps d'éclairage peut être équipé d'une interface de communication DALI2. Ce protocole prévoit la possibilité de contrôler et de surveiller le corps d'éclairage via le bus de contrôle dali.

Sur demande, le corps d'éclairage peut être équipé d'une alimentation certifiée D4i. Cette solution est idéale lorsque des capteurs et/ou des commandes sans fil sont nécessaires. Le système a été créé pour l'intégration du système et dans le sens des villes intelligentes. Le protocole DALI2 + l'alimentation auxiliaire AUX pour l'alimentation des appareils et des capteurs sont fournis. Ce système est généralement reguis en conjonction avec la prise Zhaga Lumawise.

COMMUTATEUR DE LIGNE

Cette fonctionnalité, grâce à un fil conducteur supplémentaire sur la ligne d'alimentation de l'éclairage public, permet de faire varier l'intensité du système à un niveau défini. Grâce par exemple à une minuterie centralisée il est possible de changer l'état de 100% à par exemple 50%, et inversement.

AMPDIM

Cette fonction permet la gradation d'une ligne d'éclairage public à travers la même ligne d'alimentation pilotée par un régulateur de flux en amont. Pour cette fonctionnalité

Le régulateur de débit doit fonctionner en modulation d'amplitude.

NEMA | Prise Nema (7 broches)

La prise Nema est un connecteur/prise IP66 à 7 broches, qui est monté sur le corps de l'éclairage pour le rendre interfaçable avec les appareils et télécommandes compatibles NEMA, ANSI C136.41. Ces dispositifs peuvent être installés en même temps ou ultérieurement après l'installation du corps d'éclairage. La prise NEMA prévoit la possibilité d'une coupure de courant, et l'interfaçage avec le bus DALI et/ou 1-10V. Compatible avec des appareils tels que "nœuds point à point sans fil" ou "capteurs crépusculaires" et autres.

ZHAGA | Prise Lumawise Zhaga (4 broches)

Le Lumawise Zhaga Socket 4 PIN est un connecteur / prise à 4 broches, IP66, petit et compact, qui correspond le mieux au design des luminaires GMR ENLIGHTS. La prédisposition avec prise ZHAGA lumawise vous permet d'installer des appareils ZHAGA, des capteurs, des télécommandes à la fois en même temps que l'installation et à un stade ultérieur. Cette prise est généralement requise en conjonction avec la fonctionnalité DALI SENSOR, qui fournit le protocole de communication DALI2 / D4i ainsi qu'une alimentation auxiliaire de 12 / 24V pour alimenter les capteurs. Compatible avec les solutions de contrôle point à point sans fil et les applications SMART CITIES, pour le contrôle et la surveillance des infrastructures d'éclairage public.

TÉLÉCOMMANDE ZHAGA STD

L'appareil est installé sur le corps d'éclairage équipé d'un driver D4I, via une prise zhaga préparée.

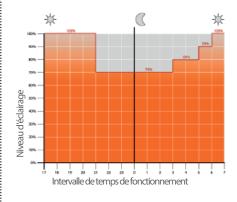
La télécommande fonctionne à des fréquences de 2,4 GHz et communique dans un réseau maillé sécurisé grâce au cryptage des données à 256 bits. Grâce au meilleur positionnement de l'antenne, le nœud vous permet de couvrir de grandes distances et de surmonter les obstacles. Équipé d'un luxmètre et d'un accéléromètre, il peut fonctionner à la fois de manière autonome et au sein de l'infrastructure de communication dédiée. L'appareil met en œuvre des politiques d'économie d'énergie qui ramènent la consommation moyenne à 0,19W. Dans l'application smartcity, le nœud vous permet d'interagir avec le réseau d'éclairage public, en atténuant les luminaires selon les besoins et en fonction des conditions de circulation et météorologiques, apportant des avantages économiques significatifs au système en termes d'économies d'énergie. Le nœud permet également la surveillance et le diagnostic du réseau d'éclairage public, d'une seule zone, au pays jusqu'à une ville ou une région entière. Le nœud a un diamètre de 80 mm et une hauteur de 59 mm. IK09, IP66.

TÉLÉCOMMANDE GPS ZHAGA

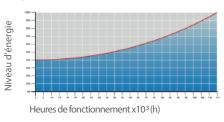
En plus des fonctionnalités exprimées pour la version STD, cette version comprend également un GPS. Grâce au GPS, le système peut compter sur une horloge astronomique ainsi que sur toutes les fonctions liées au positionnement exact

du corps lumineux. En particulier dans la phase d'installation et de mise en service, la disponibilité des informations relatives au positionnement simplifie et accélère considérablement la mise en service du système.

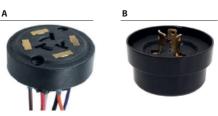
CAPTEUR DE PRÉSENCE

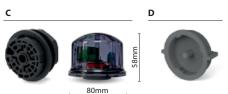

Le produit peut être équipé d'un capteur de présence type zhaga book 18 en partie basse du luminaire. Dans ce cas, le corps d'éclairage est fourni avec une prise Zhaga et un Driver D4I. Il est très important d'évaluer soigneusement le contexte d'installation (hauteur et zone sous-jacente) selon le schéma de détection de l'appareil.

TÉLÉCOMMANDES TIERCES SUR LE MARCHÉ

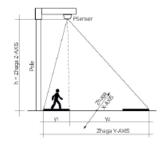

Les luminaires GMR ENLIGHTS sont compatibles avec la plupart des télécommandes tierces, systèmes à ondes véhiculées, systèmes filaires (bus), systèmes sans fil.

rev. 2022.10


Ejemplo de regulación de 4 pasos con medianoche virtual


CLO | Compensación del ujo luminoso

Nema 7 broches 7 (A) et capuchon de court-circuit IP66 (B)


Nema Socket 7 PIN (A) y tapón de cierre IP66 (B)

EJEMPLO DE APLICACIÓN DE LUMAWISE ZHAGA

EJEMPLO DE APLICACIÓN DE CAPTEUR DE PRÉSENCE

Cycles de protection

rev. 2022.10

GMR ENLIGHTS travaille avec la fonte, l'acier et l'aluminium. Les matériaux sont sélectionnés et traités pour maximiser les performances et la qualité.

Protection des surfaces en acier galvanisé pour les mâts

La protection des éléments en acier galvanisé est obtenue par les étapes suivantes :

- Micro-sablage;
- Application d'un apprêt époxy avec des phases successives de : Évaporation > Séchage > Refroidissement ;
- Application d'une laque acrylique avec des phases successives de : Évaporation > Séchage > Refroidissement;
- Emballage après au moins 24 heures de séchage à température ambiante.

Protection des surfaces en acier galvanisé pour les consoles et crosses

La protection des éléments en acier galvanisé est obtenue par les étapes suivantes :

- Micro-sablage;
- Décapage phosphorique à un pH compris entre 1,5 et 3;
- Rinçage à l'eau déminéralisée ;
- · Application d'un apprêt époxy;
- · Cuisson au four :
- · Application de la couche finale époxy;
- Cuisson au four de la couche finale époxy à 180°;
- Refroidissement.

Protections des surfaces en fonte pour les socles

La protection des éléments en acier galvanisé est obtenue par les traitements suivants :

- Micro-grenaillage de surface ;
- Galvanisation par immersion avec un enduit de zinc monocomposant, avec des phases successives de:
- Évaporation > Séchage > Refroidissement;
- Application d'un primaire epoxy micacé avec des phases successives de:
- Évaporation > Séchage > Refroidissement;
- Application d'une laque acrylique avec des phases successives de : Évaporation > Séchage > Refroidissement ;
- Emballage après au moins 24 heures de séchage à température ambiante.

Protections des surfaces en fonte d'aluminium pour les luminaires, pointes, colliers, consoles et pastorales

Les luminaires, consoles, pastorales et accessoires moulés sous pression sont soumis à un cycle de peinture époxy, qui assure la protection des pièces métalliques contre la corrosion et rend l'aspect du produit fini conforme aux spécifications de conception, en termes de rugosité de surface, de couleur et de réflectance. Le cycle est structuré selon les étapes décrites ci-après :

- Micro-sablage;
- Décapage à chaud dans une solution d'acide phosphorique dégraissante à base de zinc;
- Procédé spécifique pour la préparation des surfaces avant peinture ;
- · Lavage à l'eau;
- Rinçage à l'eau déminéralisée et séchage ultérieur ;
- Application d'un apprêt époxy et cuisson ultérieure de l'apprêt dans un four à 180°;
- Application d'une couche de finition époxy avec un produit Haute Durabilité et cuisson finale dans un four à 180°.

Test en brouillard salin

La haute qualité de ces traitements est confirmée par un test en brouillard salin, réalisé conformément à la norme ISO 9227:2017 Test de brouillard salin neutre (NSS). Le test a été effectué pendant 8000 heures à 35°C et a été prouvé par le rapport d'essai publié.

GMR ENLIGHTS s.r.l

Siège social Strada Provinciale Specchia - Alessano, 68 • 73040 (LE)

> Siège administratif et Via Grande n°226 • 47032 Bertinoro (FC)

> > T +39 0543 462611 F +39 0543 449111

sales@gmrenlights.com www.gmrenlights.com