

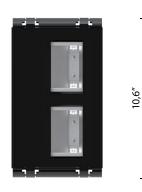
Technical data

rev. 2023.09

INSTALL: Indoor and Outdoor

ACCESSIBILITY

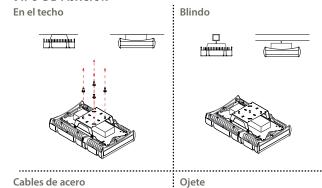
OPTICAL TECHNOLOGY

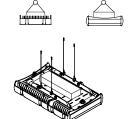

Timeless

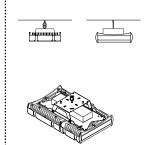
Tool-free openable fixture. Replaceable internal components without the need of tools.

Reflexa

Sistema óptico reflectante compuesto por leds monochip, refl ector de aluminio extra puro con tratamiento de plata PDV y cristal templado extraclaro.


Escala: 1:10


Peso	maximo


HP1: 4,8 Kg

Lateral: 0,02 m² |Plano: 0,04 m²

TIPO DE FIJACIÓN

Infografía relacionada con la familia Hibra y no con el producto individual

STANDARD

EN 60598-1, EN 60598-2-3, EN 62471, EN 55015, EN 61547, EN 61000-3-2, EN 61000-3-3

CERTIFICACIONES

Conformidad

Prueba del spray de sal

Clase de aislamiento

Clase de protección

Clase 0 exento de riesgo IEC / TR62471

Seguridad fotobiológica

PLUS

CARACTERÍSTICAS GEOMÉTRICAS Y MECÁNICAS

Características generales

Tensión de entrada	220-240V 50/60Hz tolerance +/-10%		
Current supply:	350 mA 525 mA 700 mA 1050 mA (P _{max} =	83W)	
Factor de potencia THD:	≥0.95 <10 % (a plena carga)		
Vida útil (Ta=25°):	> 100.000 h L90B10 @ LED 700mA		
Temperatura de trabajo: (Ta):	: $T_{min} = -40$ °C $T_{max} = +55$ °C 52,5W $+50$ °C 79W		
Temperatura almecenaje:	-40°C/+80°C		

Protección a sobretensiones: Main surge immunity hasta que 10kV Funciones estandar Corriente fija | Medianoche virtual | CLO

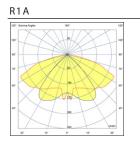
Materiales y colores

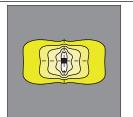
Carcasa:	Aluminio inyectado EN1706		
Cuerpo óptico:	Reflector de aluminio con tratamiento PVD plata, pureza		
	99,7% oxidado y pulido.		
Vidrio:	Vidrio ultra-chlaro templado Esp. 4 mm.		
Placa de fijación:	Acciaio S235 zincado		
Juntas:	Silicona		
Fijacable:	Poliamida PA66 PG16 Ø 14mm MAX		
Dispositivos de fijación:	Acero inox AISI 300		
Color:	RAL 9005		

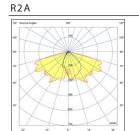
ESPECIFI CACIONES DEL LED

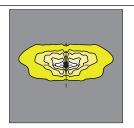
LED data 4.000 K - 700mA:	340 lm/LED 180 lm/W 25°C [Tj] \leq 3 step MacAdam
Color temperature:	3.000 K 4.000 K 5.700 K CRI ≥ 70

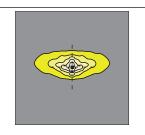
OPTIONAL

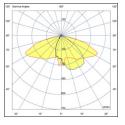

Protección adicional con	SPD con LED de señalización CLASE 1 CLASE 2 12kV	
dispositivo SPD:	kA	
Accesorios eléctricos:	Cable de alimentación de 0,5 m con 2-3 polos o 4-5 polos	
Funciones adicionales:	DALI-DALI2 DALI SENSOR Presence sensor	
Connectors and sockets:	NM (Nema Socket) LM (Lumawise Zhaga Socket)	
Smart sensors:	Zhaga type presence sensors	

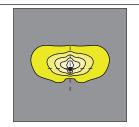

Sistemas ópticos disponibles

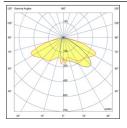

rev. 2023.09

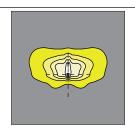

ÓPTICA SIMÉTRICA

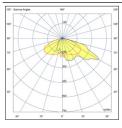


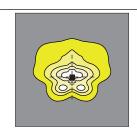

ÓPTICA ASIMÉTRICA

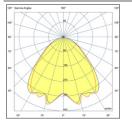


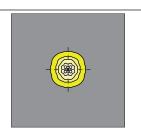

R2B

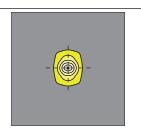


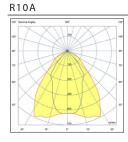


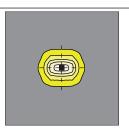

R3B




R3C




OPTIQUES DE PROJECTION



R9B

Datos fotométricos | Datos nominales modulo LED

rev. 2023.09

Los datos fotométricos están referidos a los productos en la versión estandard, con temperatura de color de 4000K, óptica de referencia tipo 3A y temperatura ambiente de 25°C. En el caso de cálculos iluminotécnicos con corriente de arranque y/o temperatura de color diferente a la estandard, utilizar el factor de conversión para el flujo lumínico que aparece en la tabla.

Código LED		(•) I [mA]	Flujo lumínico [lm]	Potencia [W]	Eficacia [lm/W]
	F03	350	2377	11,9	200
		525	3374	18,2	185
RF03		700	4282	24,7	174
		1050	5850	38,0	154
	RF06	350	4667	23,6	198
		525	6622	36,2	183
RF06		700	8402	49,1	171
		1050	11473	75,6	152

Datos fotométricos | Datos medidos de la luminaria

rev. 2023.09

Los datos fotométricos medidos se refieren a cuerpos de iluminación GMR ENLIGHTS en la versión estándar, es decir, con temperatura de color 4000 K, óptica tipo R3A y temperatura ambiente ta igual a 25 ° C.

GMR ENLIGHTS ofrece la posibilidad de conducir el dispositivo con corrientes personalizadas (•).

La disponibilidad de funciones está sujeta a configuraciones. Para obtener flujos luminosos y eficiencias del cuerpo de iluminación en caso de tipo de óptica y / o temperatura de color y / o índice de reproducción cromática diferente al estándar, utilice los factores de conversión que se muestran en las tablas.

		(•) I [mA]	Flujo lumínico [lm]	Potencia [W]	Eficacia [lm/W]
		350	2234	15,0	149
DEGG		525	3171	21,5	147
RF03	[-]	700	4024	28,5	141
	**************************************	1050	5497	42,5	129
		350	4385	28,0	157
RF06		525	6223	40,5	154
		700	7896	55,0	144
		1050	10781	83,0	130

FACTOR DE CONVERSION DEL FLUJO LUMINICO EN FUNCION DE LA OPTICA

Tipo de óptica	Multiplicador de flujo
R2A	0,99
R2B	0,98
R3B R3C	1,00
R9A	1,00
R9B	0,98
R10A	0,99

FACTOR DE CONVERSION DEL FLUJO LUMINICO EN FUNCION

Tk [K]	Multiplicador de flujo
3.000	0,94
5.700	1,01

FACTOR DE CONVERSION DEL FLUJO LUMINICO EN FUNCION AL CRI

CRI (rendimiento color)	Multiplicador de flujo	
70	1,00	
80	0,93	

(°) Ver pag: Sistema óptico disponible, para comprobar la disponibilidad del tipo de óptica.

(*) Consulte la disponibilidad de la temperatura de color en la página: Datos técnicos.

Funciones rev. 2023.09

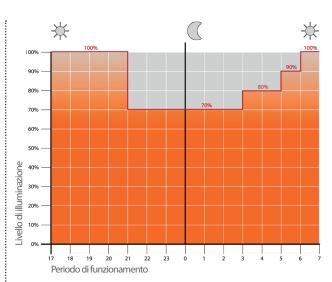
Funciones estandar

Corriente fija

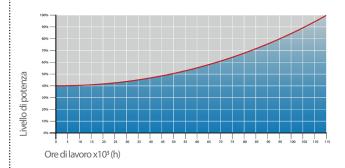
La corriente de arranque de la luminaria es fi ja, manteniendo de este modo el consumo constante en al salida.

Regulación automática del fl ujo lumínico - Medianoche virtual

Regulación automática del fl ujo lumínico. El driver regula automáticamente, un segundo perfi l programable, la intensidad lumínica en función de la hora. El máximo fl ujo estará concentrado durante las primeras y últinas horas de encendido de la luminaria. De este modo es posible disminuir el consumo en la parte central de la noche, estadísticamente con menor tránsito. La modalidad de reducción del consumo se adapta a la variación de la duración de los periodos nocturnos durante el año. El driver viene programado de Fábrica.


CLO - Luminosidad constante en la salida

Los LED durante su vida están están sufriendo un proceso de disminución de prestaciones debido al uso. Para mantener constante el fl ujo lumínico en la salida, la disminución de las prestaciones se pueden compensar mediante un aumento progresivo de la corriente de entrada al LED. De este modo se puede utilizar un coefi ciente de amortización mas largo respecto al habitual, garantizando en consecuencia un ahorro energético que se traduce en un abaratamiento de los costes de amortización de la planta.


Funciones adicionales

DALI - Interfaz de iluminación direccionable digitalmente

DALI es la tecnología digital estandard para la gestión de luminariasi, basada sobre una señal digital capaz de contralar individualmente hastaa 64 modulos sobre el mismo bus. La luminaria está preparada para la conexión de los cables L-N-DALI. Ademas se necesita un cable de señal +/-.

Ejemplo de regulación de 4 pasos con medianoche virtual

CLO | Compensación del flujo luminoso

rev. 2023.09

Protecciones

Protección de las superficies en acero galvanizado para columnas

La protección de los elementos en acero galvanizado se obtiene mediante el siguiente proceso:

- •Micro chorreado con arena
- •Aplicación de una capa epoxy en varios pasos:

Maduración > Secado > Enfriado

Aplicación de una capa de esmalte acrílico en varios pasos:

Maduración > Secado > Enfriado

•Embalaje después de 24 horas de secado a temperatura ambiente.

Protecciones de las superficies en acero galvanizado para ménsulas y brazos

Las protecciones de los elementosi en acero galvanizado se obtienen mediante el siguiente proceso:

- •Micro chorreado con arena
- •Baño de decapaje Fosforico con pH entre 1.5 y 3
- •Aclarado con agua desmineralizada
- •Aplicación de una primera capa de base de pintura en polvo
- •Horneado
- ·Aplicación de una capa final de pintura en polvo
- ·Horneado a 180°
- Enfriamiento

Protecciones de las superficies en fundición para las bases

La protección de los elementos de fundición se obtienen mediante el siguiente proceso:

- •Microgranallado de la superficie
- •Galvanizado en caliente por inmersiónn en varios pasos:

Maduración > Secado > Enfriado

•Aplicación de una capa de primer epoxy-micaceo en varios pasos:

Maduración > Secado > Enfriamiento

•Aplicación de una capa de esmalte acrílico en varios pasos:

Maduración > Secado > Enfriamiento.

•Embalaje después de 24 horas de secado ae temperatura ambiente.

Proteciones para las superficies de aluminio inyectado de las carcasas, puntas, adornos, ménsulas y brazos

Ménsulas, brazos y accesorios en aluminio inyectado están sometidos a un proceso de pintura en polvo, que crea una barrera contra la corrosión de las partes metálicas. Además, esta barrera hace que el producto terminado cumpla con las especificaciones de diseño, en términos de rugosidad superficial, color y reflectancia. El proceso consta de los siguiente pasos:

- •Microchorreado con arena
- •Decapado en caliente en una solución fosfórica desengrasante a base di zinc.
- ·Limpieza superficial fosfocromatizante
- ·Lavado con agua
- •Aclarado con agua desmineralizada y secado posterior.
- •Aplicación de una base de polvo seguida de un horneado a 180º
- •Aplicación de una capa final de polvo utilizando un producto de lata durabilidad y seguida de un horneado a 180º

Test de niebla salina | FLORIDATEST

La alta calidad de estos tratamientos está confirmada por los exitosos resultados del test de niebla salina (los productos sobrepasan ampliamente las 2.500 horas) y las estrictas pruebas internacionales entre las que se encuentra el TEST FLORIDA.

El test de niebla salina está hecho de acuerdo con la norma UNI EN ISO 9227.

GMR ENLIGHTS s.r.l

Sede legal: Strada Provinciale Specchia - Alessano, 68 • 73040 (LE)

> Sede administrativa y operativa: Via Grande n°226 • 47032 Bertinoro (FC)

> > T +39 0543 462611 F +39 0543 449111

sales@gmrenlights.com www.gmrenlights.com